Berikutkakak beri contoh soal dan. Soal dan pembahasan barisan dan deret doc. (1) u5 = a + 4b = 22. Usm stan 2009 27, 64, 18, 48, 12, 36,. Jumlah sepuluh suku pertama deret tersebut adalah. Segini aja pembahasan tentang rumus barisan dan deret geometri lengkap dengan contoh soal.
Contohsoal barisan dan deret geometri kelas 8 Archives - Quipper.Co.Id.
Materikelas 10 SMA : Barisan dan Deret Geometri. Selasa, Maret 25, 2014. Setelah sebelumnya Salman Project membahas tentang Barisan Dan deret Aritmetika sekarang akan membahas tentang Barisan dan Deret Geometri. Dan juga Video pembelajaran yang akan membimbing kalian semua agar bisa mengerjakan soal BArisan dan Deret Geometri.
Vay Tiền Nhanh. Dalam kehidupan sehari-hari, banyak persoalan yang dapat diselesaikan dengan menggunakan barisan maupun deret, misalnya perhitungan bunga bank, perhitungan kenaikan produksi, dan laba usaha. Untuk menyelesaikan persoalan tersebut, terlebih dahulu kita tentukan apakah masalah tersebut adalah barisan aritmetika, barisan geometri, deret aritmetika atau deret geometri. Kemudian kita selesaikan dengan rumus-rumus yang berlaku untuk memperoleh jawaban dari persoalan yang soal aplikasi barisan dan deretUntuk lebih jelasnya, dibawah ini diberikan 10 soal aplikasi barisan dan deret yang disertai penyelesaiannya atau 1Setiap awal bulan, Susi menabung sejumlah uang di bank dengan besar selalu naik. Bulan pertama menabung Rp bulan kedua Rp dan bulan ketiga Rp dan seterusnya. Jumlah tabungan Susi setelah 10 bulan tanpa bunga adalah…Penyelesaian / PembahasanDiketahuia = Rp = Rp – Rp = Rp = 10Dengan menggunakan rumus deret aritmetika diperolehSn = 1/2 n 2a + n – 1 bU10 = 1/2 . 10 2 . Rp + 10 – 1 Rp = 5 Rp + Rp = 5 Rp = Rp jumlah tabungan Susi setelah 10 bulan adalah Rp 2Suatu perusahaan memproduksi barang pada tahun pertama. Setiap tahun perusahaan tersebut menaikkan produksinya sebesar 200 satuan barang. Banyaknya produksi pada tahun ke 10 adalah…Penyelesaian / PembahasanDiketahuia = = 200n = 10Dengan menggunakan rumus suku ke n barisan aritmetika didapat hasilUn = a + n – 1 bU10 = + 10 – 1 200U10 = + = 2800Jadi banyak produksi pada tahun ke 10 adalah unit 3Disuatu gedung serba guna terdapat 20 baris kursi. Pada baris paling depan tersedia 20 kursi, baris belakangnya memuat 3 kursi lebih banyak dari baris jumlah kursi pada baris ke 15Tentukan jumlah kursi didalam gedung serba guna / PembahasanU15 = a + n – 1 b = 20 + 15 – 1 3 = 62 kursiS20 = n 2a + n – 1 b = . 20 2 . 20 + 20 – 1 3 = 970 4Dalam suatu rapat kooperasi dihadiri oleh 15 orang yang saling berjabat tangan satu sama lain. Tentukan jumlah jabat tangan yang terjadi dalam rapat / PembahasanOrang pertama akan menyalami 14 orang, orang kedua akan menyalami 13 orang, orang ketiga akan menyalami 12 orang dan orang ke 14 akan menyalami 1 orang. Jadi terbentuk barisan bilangan 1 + 2 + 3 + … + 14. Diketahuia = 1b = 1n = 14Cara menghitung jumlah jabat tangan gunakan rumus deret aritmetika dan hasilnya sebagai berikutJadi banyak jabat tangan dalam rapat tersebut adalah 105 jabat 5Gaji seorang pegawai pabrik mula-mula Rp Setiap bulan gajinya bertambah 5% dari gaji sebelumnya. TentukanJumlah kenaikan gaji selama satu tahunBesar gaji setelah 2 tahunPenyelesaian / PembahasanDiketahuia = Rp = 5 % x Rp = Rp jawaban soal diatas sebagai berikutS12 = . 12 2 . Rp + 12 – 1 Rp = Rp = a + n – 1 b = Rp + 24 – 1 Rp = Rp 6Edwin menumpuk bata dalam bentuk barisan. Banyaknya bata pada baris pertama lebih banyak satu bata dari banyaknya bata pada baris diatasnya. Tumpukan bata dimulai dari 200 bata pada baris pertama dan baris terakhir satu bata. Hitunglah jumlah semua bata yang / PembahasanBarisan bilangan pada bata diatas adalah 20 + 19 + 18 + … + 1. Jadi jumlah semua bata menggunakan barisan aritmetika sebagai berikutJadi banyak bata = 210 7Riska membeli barang kredit seharga Rp Ia melakukan pembayaran dengan diangsur berturut-turut setiap bulan sebesar Rp Rp Rp demikian seterusnya. Berapa lamakah kredit barang tersebut akan / PembahasanDiketahuiSn = Rp = Rp = Rp mencari n sebagai berikutn = -44 tidak mungkin. Jadi lama kredit akan lunas adalah 20 8Berdasarkan survey populasi hewan P bertambah menjadi empat kali lipat setiap 5 tahun. Jika pada tahun 2020 populasi hewan P adalah 640 ekor, berapakah populasi hewan tersebut pada tahun 2010 ?.Penyelesaian / PembahasanDeret bilangan dari tahun 2010 ke 2020 dengan selisih 5 tahun adalah 2010, 2015, 2020. Diketahuin = 3U3 = 640r = 4 empat kali lipatCara menjawab soal ini menggunakan rumus barisan geometri sebagai berikutUn = arn – 1U3 = ar3 – 1640 = a . 42640 = a . 16a = 640/16 = 40Jadi populasi hewan P pada tahun 2010 adalah 40 9Jumlah penduduk suatu wilayah setiap 8 tahun bertambah 100%. Jika pada awal tahun 2016 jumlah penduduk mencapai jiwa, maka jumlah penduduk pada awal tahun 1984 adalah…Penyelesaian / PembahasanDiketahuiDeret bilangan dari tahun 1984 ke 2016 dengan selisih 8 tahun adalah 1984, 1992, 2000, 2008, 2016. Jadi diketahuin = 5U5 = = 2 bertambah 100%Jumlah penduduk pada awal tahun 1984 dihitung menggunakan rumus barisan geometriUn = arn – 1U5 = ar5 – = a . = a . 16a = = jumlah penduduk pada tahun 1984 adalah 10Suatu gedung pertunjukkan mempunyai beberapa kursi. Setelah baris pertama, setiap baris mempunyai 2 kursi lebih banyak daripada baris sebelumnya. Perbandingan banyak kursi baris ke-9 dan ke-6 adalah 4 3. Baris terakhir mempunyai 50 kursi. Banyak kursi yang dimiliki gedung tersebut adalah…Penyelesaian / PembahasanDiketahuib = 2U9 U6 = 4 3Un = 50Hitung terlebih dahulu banyak kursi pada baris pertama a3a + 48 = 4a + 404a – 3a = 48 – 40a = 8Selanjutnya hitung nUn = a + n – 1 b50 = 8 + n – 1 22 n – 1 = 42n – 1 = = 21n = 21 + 1 = 22Banyak kursi dalam gedungJadi banyak kursi dalam gedung = 638 kursi.
Salah satu apliksai barisan dan deret pada bidang ekonomi adalah pada perhitungan bunga pada simpanan uang di bank atau koperasi atau lembaga lain sejenisnya. Terdapat dua macam jenis bunga pada simpanan, yaitu 1 Bunga Tunggal Barisan Aritmatika Yaitu metoda pemberian imbalan jasa bunga simpanan yang dihitung berdasarkan modal pokok pinjaman atau modal awal simpanan saja. Rumus bunga tunggal Mn = Mo 1 + in Dimana Mn = Nilai modal simpanan periode ke-n Mo = Nilai modal awal simpanan i = Persentase bunga simpanan n = Periode pembungaan 2 Bunga Majemuk Barisan geometri Yaitu metoda pemberian imbalan jasa bunga simpanan yang dihitung berdasarkan besar modal atau simpanan pada periode bunga berjalan Rumus bunga majemuk Mn = Mo 1 + in Dimana Mn = Nilai modal simpanan setelah periode ke-n Mo = Nilai modal awal simpanan i = Persentase bunga simpanan n = Periode pembungaan Untuk lebih jelasnya, ikutilah contoh soal berikut ini 01. Pak Ahmad memerlukan tambahan modal untuk usahanya berdagang makanan, sehingga ia meminjam uang dikoperasi “Maju Jaya” sebesar Rp. dengan imbalan jasa berupa bunga sebesar 2% dari pokok pinjaman per bulan. Jika pak Ahmad akan melunasi pinjaman itu beserta bunganya setelah 6 bulan, maka tentukanlah total pengembalian pak Ahmad Jawab Diketahui Mo = i = 2% = 0,02 n = 6 maka Mn = Mo 1 + in M6 = + 0,026 M6 = M6 = Jadi total pengembalian pak Ahmad adalah Rp. 02. Arman menabung sejumlah uang disebuah bank. Jenis tabungan yang dipilih Arman adalah tabungan dengan sistem bunga tunggal sebesar 3% per caturwulan. Jika setelah 3 tahun tabungan Arman menjadi Rp. maka tentukanlah besar tabungan awal Arman di bank itu Jawab Jadi besar tabungan awal Arman di bank itu adalah Rp. 03. Pak Budi menabung sebesar Rp. di suatu bank. Jika bank memberlakukan sistem bunga tunggal sebesar 3% setiap triwulan, maka setelah berapa lamakah uang tabungan pak Budi menjadi Rp. Jawab Diketahui Mo = i = 3% = 0,03 Mn = maka Mn = Mo 1 + in = 1 + 0,03n = + = n = n = 10 sehingga n = 10 triwulan = 10x3 bulan = 30 bulan = 2,5 tahun 04. Pak Mulyo adalah seorang pengusaha batik. Ia menyimpan uangnya sebesar Rp. di sebuah bank. Bank tersebut memberikan bunga tabungan dengan sistem bunga majemuk sebesar 12% per bulan. Berapakah besarnya tabungan pak Mulyo setelah 5 bulan ? Jawab Diketahui Mo = i = 12% = 0,12 n = 5 Ditanya Mn = …. ? Jawab Mn = Mo 1 + in M10 = 1 + 0,125 M10 = 1,125 M10 = M10 = 05. Santi menyimpan uangnya di sebuah bank sebesar Rp. Setelah tiga tahun uang tabungan Santi menjadi Rp. Jika bank tersebut menerapkan sistem bunga majemuk , berapa persenkah per-tahun bunga bank tersebut ? Jawab Diketahui Mo = Mn = n = 3 Ditanya i = …. ? Jawab Aplikasi lain dari barisan dan deret adalah pada pertumbuhan dan peluruhan 1 Pertumbuhan yaitu bertambahnya jumlah / nilai suatu objek yang mengikuti pola aritmatika atau geometri. Contoh a Perkembangbiakan bakteri b Pertumbuhan penduduk 2 Peluruhan yaitu berkurangnya jumlah / nilai suatu objek yang mengikuti pola aritmatika atau geometri Contoh a Penurunan nilai jual mobil b Penurunan jumlah populasi hewan Rumus Pertumbuhan aritmatika Mn = Mo 1 + pn atau Mn = Mo + bn Dimana Mn = Jumlah/Nilai suatu objek setelah n waktu Mo = Jumlah/Nilai suatu objek mula-mula p = Persentase pertumbuhan b = Nilai beda pertumbuhan n = jangka waktu pertumbuhan Rumus Pertumbuhan geometri Mn = Mo 1 + pn atau Mn = Mo . rn Dimana Mn = Jumlah/Nilai suatu objek setelah n waktu Mo = Jumlah/Nilai suatu objek mula-mula i = Persentase pertumbuhan r = Ratio pertumbuhan r > 1 n = jangka waktu pertumbuhan Untuk lebih jelasnya, ikutilah contoh soal berikut ini 01. Elsa mulai bekerja pada suatu perusahaan pada awal tahun 2005 dengan gaji permulaan sebesar Rp. Jika dia mendapatkan kenaikan gaji secara berkala setiap tahunnya sebesar Rp. maka berapakah gaji yang diterima Elsa pada awal tahun 2011? Jawab Diketahui Mo = b = n = 6 Ditanya Mn = …. ? Jawab Mn = Mo + bn Mn = + Mn = + Mn = Rp. 02. Suatu koloni bakteri akan membelah menjadi dua setiap lima menit. Jika pada permulaan trdapat 90 bakteri, maka tentukanlah jumlah bakteri setelah setengah jam ? Jawab Diketahui Mo = 90 r = 2 n = 4 Ditanya Mn = …. ? Jawab Mn = Mo . rn Mn = 90 x 42 Mn = 90 16 Mn = 1440 bakteri 03. Jumlah penduduk suatu kota bertambah menurut pola geometri sebesar 0,1% per bulan. Berarti jika jumlah penduduk kota itu semula 3 juta orang maka pada akhir bulan ke-3 jumlahnya telah menjadi sekitar … orang Jawab Diketahui Mo = i = 0,1% = 0,001 n = 3 Ditanya Mn = …. ? Jawab Mn = Mo 1 + in M3 = 1 + 0,0013 M3 = 1,0013 M3 = M3 = orang Rumus Peluruhan aritmatika Mn = Mo 1 – in atau Mn = Mo – bn Dimana Mn = Jumlah/Nilai suatu objek setelah n waktu Mo = Jumlah/Nilai suatu objek mula-mula p = Persentase peluruhan b = Nilai beda peluruhan n = jangka waktu peluruhan Rumus Peluruhan geometri Mn = Mo 1 – pn atau Mn = Mo . rn Dimana Mn = Jumlah/Nilai suatu objek setelah n waktu Mo = Jumlah/Nilai suatu objek mula-mula i = Persentase peluruhan r = Ratio peluruhan r < 1 n = jangka waktu peluruhan Untuk lebih jelasnya, ikutilah contoh soal berikut ini 04. Sebuah mobil dibeli dengan harga Jika setiap tahun harganya mengalami penyusutan 20% dari nilai tahun sebelumnya, maka tentukanlah harga mobil itu setelah dipakai selama 5 tahun Jawab Diketahui Mo = i = 20% = 0,2 n = 5 Ditanya Mn = …. ? Jawab Mn = Mo 1 – in Mn = 1 – 0,25 Mn = 0,85 Mn = Mn = 05. Suatu pabrik kendaraan bermotor roda dua mulai memproduksi pertama pada tahun 2010 sebanyak unit kendaraan. Tiap tahun produksi pabrik tersebut turun 100 unit. Berapakah jumlah produksi pada tahun 2016? Jawab Diketahui Mo = b = 100 n = 6 Ditanya Mn = …. ? Jawab Mn = Mo – bn Mn = – 1006 Mn = – 600 Mn = unit 06. Suatu jenis hewan langka setiap tahun mengalami penurunan jumlah populasi sebanyak 1/3 dari jumlah populasi tahun sebelumnya. Jika pada tahun 2015 diperkirakan jumlah populasi hewan tersebut disuatu pulau sebanyak 720 ekor, maka berapakah perkiraan jumlah hewan itu pada tahun 2019 ? Jawab Diketahui Mo = 360 r = 1/4 n = 4 Ditanya Mn = …. ? Jawab Mn = Mo . rn Mn = 360 x 41/34 Mn = 360 x 1/81 Mn = 14,44 = 14 ekor 07. Dengan pesatnya pembangunan pemukiman, maka daerah pesawahan semakin lama semakin sempit. Menurut data statistik, pada tahun 2003 total areal sawah di daerah itu sekitar 400 ha dan setiap tahun berkurang 5% dari total areal sawah semula . Berapakah diperkirakan areal sawah pada tahun 2015? Jawab Diketahui Mo = 400 i = 5% = 0,05 n = 12 Ditanya Mn = …. ? Jawab Mn = Mo 1 – in Mn = 4001 – 0,05x12 Mn = 4001 – 0,6 Mn = 4000,4 Mn = 160 ha
aplikasi barisan dan deret geometri